

# TMV 349 - MacCONKEY AGAR (W/O CV, W/ 0.15% BILE SALTS & NaCl) (VEG.)

#### **INTENDED USE**

For isolation and differentiation of lactose fermenting and lactose nonfermenting enteric bacteria.

# PRODUCT SUMMARY AND EXPLANATION

Veg MacConkey Agar is the earliest selective and differential medium for cultivation of enteric microorganisms from a variety of clinical specimens. Subsequently MacConkey Agar have been recommended for use in microbiological examination of foodstuffs and for direct plating / inoculation of water samples for coliform counts. These media are also accepted by the Standard Methods for the Examination of Milk and Dairy Products Original medium contains protein, bile salts, sodium chloride and two dyes. Veg MacConkey Agar w/o CV w/ 0.15% Bile Salts is a modification of the original medium with the exception of crystal violet.

## **COMPOSITION**

| Ingredients         | Gms / Ltr |
|---------------------|-----------|
| Veg peptone         | 17.000    |
| Veg peptone No. 3   | 3.000     |
| Lactose             | 10.000    |
| Synthetic detergent | 1.500     |
| Sodium chloride     | 5.000     |
| Neutral red         | 0.030     |
| Agar                | 15.000    |

### **PRINCIPLE**

Veg peptone and Veg Peptone No. 3 serves as a source of carbon, nitrogen, long chain amino acids and other essential growth nutrients. The selective action of this medium is attributed to bile salts, which is inhibitory to most species of gram-positive bacteria. Gram-negative bacteria usually grow well on the medium and are differentiated by their ability to ferment lactose. Lactose fermenting strains grow as red or pink colonies. The red colour is due to production of acid from lactose, absorption of neutral red and a subsequent colour change of the dye when the pH of medium falls below 6.8. Lactose non-fermenting strains, such as *Shigella* and *Salmonella* are colourless and transparent and typically do not alter appearance of the medium. *Yersinia enterocolitica* may appear as small, non-lactose fermenting colonies after incubation at room temperature.

# **INSTRUCTION FOR USE**

- Dissolve 51.53 gm of medium in 1000 ml purified/distilled water.
- Heat to boiling with gentle swirling to dissolve the agar completely.
- Sterilize by autoclaving at 15 psi pressure (121°C) for 15 minutes. Avoid overheating.
- Cool to 45 50°C.Mix well and pour into sterile Petri plates.

# **QUALITY CONTROL SPECIFICATIONS**

**Appearance of Powder** : Pinkish beige coloured, homogeneous, free flowing powder.

Appearance of prepared medium : Light red coloured, clear to slightly opalescent gel forms in petri plates.

**pH (at 25°C)** : 7.1±0.2









# **INTERPRETATION**

Cultural characteristics observed after an incubation.

| Microorganism                             | ATCC  | Inoculum<br>(CFU/ml) | Growth          | Recovery | Colour of<br>Colony | Incubation<br>Temperature | Incubation<br>Period |
|-------------------------------------------|-------|----------------------|-----------------|----------|---------------------|---------------------------|----------------------|
| Escherichia coli                          | 25922 | 50-100               | Luxuriant       | >=70 %   | Pink to red         | 35-37°C                   | 18-24 Hours          |
| Klebsiella<br>aerogenes                   | 13048 | 50-100               | Luxuriant       | >=70 %   | Pink                | 35-37°C                   | 18-24 Hours          |
| Enterococcus<br>faecalis                  | 29212 | 50-100               | None-poor       | 0-10%    | Pale pink to<br>red | 35-37°C                   | 18-24 Hours          |
| Proteus vulgaris                          | 13315 | 50-100               | Luxuriant       | >=70 %   | Colourless          | 35-37°C                   | 18-24 Hours          |
| Salmonella<br>Paratyphi A                 | 9150  | 50-100               | Luxuriant       | >=70 %   | Colourless          | 35-37°C                   | 18-24 Hours          |
| Shigella flexneri                         | 12022 | 50-100               | Fair to<br>good | 20 -40 % | Colourless          | 35-37°C                   | 18-24 Hours          |
| Salmonella<br>Paratyphi B                 | 8759  | 50-100               | Luxuriant       | >=70 %   | Colourless          | 35-37°C                   | 18-24 Hours          |
| Salmonella<br>Enteritidis                 | 13076 | 50-100               | Luxuriant       | >=70 %   | Colourless          | 35-37°C                   | 18-24 Hours          |
| Salmonella<br>Typhi                       | 6539  | 50-100               | Luxuriant       | >=70 %   | Colourless          | 35-37°C                   | 18-24 Hours          |
| Staphylococcus<br>aureus subsp.<br>aureus | 25923 | >=10 <sup>3</sup>    | Inhibited       | 0%       | -                   | 35-37°C                   | 18-24 Hours          |

# **PACKAGING:**









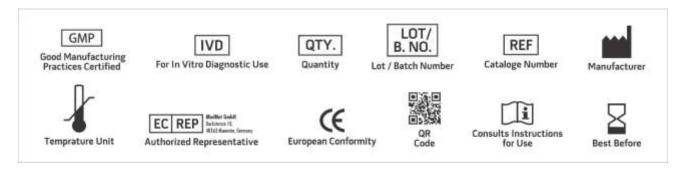




In pack size of 100 gm and 500 gm bottles.

#### **STORAGE**

Dehydrated powder, hygroscopic in nature, store in a dry place, in tightly-sealed containers between 25-30°C and protect from direct sunlight. Under optimal conditions, the medium has a shelf life of 4 years. When the container is opened for the first time, note the time and date on the label space provided on the container. After the desired amount of medium has been taken out replace the cap tightly to protect from hydration.


**Product Deterioration:** Do not use if they show evidence of microbial contamination, discoloration, drying or any other signs of deterioration.

#### **DISPOSAL**

After use, prepared plates, specimen/sample containers and other contaminated materials must be sterilized before discarding.

#### **REFERENCES**

- 1. Greenberg A. E., Trussell R. R. and Clesceri L. S. (Eds.), Standard Methods for the Examination of Water and Wastewater, 1985, 16th ed., A.P.H.A., Washington, D.C.
- 2. Rappaport F. and Henigh E., 1952, J. Clin. Path., 5:361.
- 3. International Organization for Standardization (ISO), 1990, Draft ISO/DIS 9308-2.
- 4. Harrigan W.F. and McCance M.E. (Eds.), 1976, Laboratory Methods in Food and Dairy Microbiology, Academic Press, London.
- 5. Holt, Harris and Teague, 1916, J. Infect. Dis., 18:596.
- 6. MacConkey, 1900, The Lancet, ii:20.
- 7. MacConkey, 1905, J. Hyg., 5:333.
- 8. Speck M. (Ed.), 1985, Compendium of Methods for the Microbiological Examination of Foods, 2nd ed., APHA, Washington, D.C.
- 9. Greenberg A. E., Clesceri L. S. and Eaton A. D., (Eds.), 1992, Standard Methods for the Examination of Water and Wastewater, 18th ed., APHA, Washington, D.C.
- 10. Marshall R. (Ed.), 1992, Standard Methods for the Examination of Dairy Products, 16th ed., APHA, Washington, D.C.
- 11. Karmali M.A., Petric M., Lim C., et al, 1985, J. Infect. Dis., 151:775.
- 12. Lior H. and Borcryk A., 1987, Lancet, i:333.
- 13. MacFaddin J., 1985, Media for Isolation-Cultivation-Identification- Maintenance of Medical Bacteria, Vol. I, Williams and Wilkins, Baltimore.



**NOTE:** Please consult the Material Safety Data Sheet for information regarding hazards and safe handling Practices.

\*For Lab Use Only

Revision: 08 Nov., 2019







