

TM 2093 - HALF FRASER BROTH (FRASER BROTH BASE, MODIFIED)

INTENDED USE

For the selective enrichment of *Listeria* species from foods.

PRODUCT SUMMARY AND EXPLANATION

Fraser Broth Base, modified is based on the formulation by Fraser and Sperber. It is recommended for selective enrichment of Listeria species from foods.

Listeria species are widely distributed and are isolated from soil, decaying vegetable matter, sewage, water, animal feed, fresh and frozen poultry, meats, raw milk, cheese and asymptomatic human and animal carriers. Only Listeria monocytogenes from the genus Listeria; causes infections in humans. L. monocytogenes primarily causes meningitis, encephalitis or septicemia in humans. In pregnant women, Listeria monocytogenes often causes an influenza like bacteremic illness that, if untreated, may lead to ammionitis and infection of the fetus, resulting in abortion, still birth or premature birth. Contaminated foods are the primary vehicles of transmission.

COMPOSITION

Ingredients	Gms / Ltr		
Peptone	5.000		
Tryptone	5.000		
Yeast extract	5.000		
Beef extract	5.000		
Sodium chloride	20.000		
Lithium chloride	3.000		
Disodium phosphate	9.600		
Monopotassium phosphate	1.350		
Esculin	1.000		
Nalidixic acid	0.010		
Acriflavin	0.0125		

PRINCIPLE

This medium contains peptone, Tryptone, yeast extract and HM Peptone B which provide essential nutrients like carbon and nitrogenous compounds including vitamins, amino acids and trace ingredients. Phosphate buffer medium while sodium chloride maintains osmotic equilibrium. Nalidixic acid and Acriflavin inhibits the growth of gram-negative and gram-positive organisms respectively except Listeria species. Listeria species hydrolyze esculin to glucose and esculetin. The latter combines with ferric ions of ferric ammonium citrate, resulting in the formation of 6-7 dihydroxycoumarin, a black brown complex. Ferric ammonium citrate also enhances the growth of L. monocytogenes. The high salt tolerance (of sodium chloride) of Listeria is used as means to inhibit the growth of Enterococci. Lithium chloride is also used to inhibit Enterococci, which also possess the ability to hydrolyze esculin.

INSTRUCTION FOR USE

- Dissolve 54.97 grams in 1000 ml distilled water.
- Heat if necessary to dissolve the medium completely.
- Sterilize by autoclaving at 15 psi pressure (121°C) for 15 minutes.
- Cool to 45-50°C and aseptically add rehydrated contents of 2 vials of Fraser Supplement.

• Mix well and dispense as desired.

QUALITY CONTROL SPECIFICATIONS

Appearance of Powder : Cream to yellow homogeneous free flowing powder.

Appearance of prepared medium : Fluorescent yellow coloured clear solution.

pH (at 25°C) : 7.2±0.2

INTERPRETATION

Cultural characteristics observed on addition of Fraser supplement after an incubation.

Microorganism	ATCC	Inoculum (CFU/ml)	Growth	Esculin Hydrolysis	Incubation Temperature	Incubation Period
Escherichia coli	25922	>=10³	Inhibited	-	35 - 37°C	24-48 Hours
Enterococcus faecalis	29212	50-100	None-poor	-	35 - 37°C	24-48 Hours
Listeria monocytogenes	19111	50-100	Good- luxuriant	Positive reaction, blackening of medium	35 - 37°C	24-48 Hours
Listeria monocytogenes	19112	50-100	Good- luxuriant	Positive reaction, blackening of medium	35 - 37°C	24-48 Hours
Listeria monocytogenes	19117	50-100	Good- luxuriant	Positive reaction, blackening of medium	35 - 37°C	24-48 Hours
Listeria monocytogenes	19118	50-100	Good- luxuriant	Positive reaction, blackening of medium	35 - 37°C	24-48 Hours
Staphylococcus aureus subsp. aureus	25923	50-100	None-poor	-	35 - 37°C	24-48 Hours

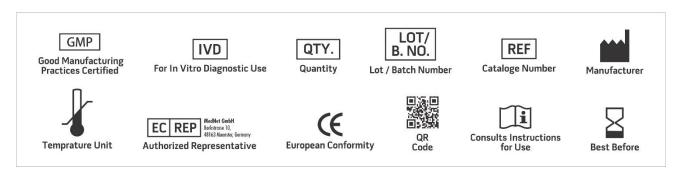
PACKAGING:

In pack size of 500 gm bottles.

STORAGE

Dehydrated powder, hygroscopic in nature, store in a dry place, in tightly-sealed containers between 25-30°C and protect from direct sunlight. Under optimal conditions, the medium has a shelf life of 4 years. When the container is opened for

the first time, note the time and date on the label space provided on the container. After the desired amount of medium has been taken out replace the cap tightly to protect from hydration.


Product Deterioration: Do not use if they show evidence of microbial contamination, discoloration, drying or any other signs of deterioration.

DISPOSAL

After use, prepared plates, specimen/sample containers and other contaminated materials must be sterilized before discarding.

REFERENCES

- 1. Seeliger H. P. R., and Jones D., 1986, Bergeys Manual of Systematic Bacteriology, Vol. The Williams and Wilkins Co., Baltimore.
- 2. Nieman R. E., and Lorber B., 1980, Rev. Infect. Dis. 2: 207-227.
- 3. Schuchat A. B., Swaminathan and C. V. Broome, Clin. Microbiol. Rev. 4: 169-183.
- 4. Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H., (Eds.), 8th Ed., 2003, Manual of Clinical Microbiology, ASM, Washington, D.C.
- 5. Lovette J., Francis D.W. and Hunt J.M., 1987, J. Food Prot., 50:188.
- 6. Lee W.K. and McClain D., 1986, Appl. Environ. Microbiol., 52:1215.
- 7. McClain D. and Lee W.H., 1988, J. Assoc. Off. Anal. Chem., 71:660.
- 8. Cowart R. E. and Foster B. G., 1985, J. Infect. Dis.; 151:172.
- 9. Fraser, J., and W. Sperber. 1988. Rapid detection of Listeria in food and environmental samples by esculin hydrolysis. Journal of Food Protection 51: 762-765.

NOTE: Please consult the Material Safety Data Sheet for information regarding hazards and safe handling Practices.

*For Lab Use Only
Revision: 08 Nov., 2019

