

# TM 1874 -TRIPLE SUGAR IRON AGAR (IS: 5887 (Part I, III and V) 1976, reaffirmed 2005)

#### **INTENDED USE**

For confirmation of gram-negative enteric bacilli on basis of dextrose, lactose and sucrose fermentation and H<sub>2</sub>S production.

#### PRODUCT SUMMARY AND EXPLANATION

Triple Sugar Iron Agar was originally proposed by Sulkin and Willett and modified by Hajna for identifying Enterobacteriaceae. This medium is a modification of the Kligler Agar where sucrose was added to differentiate *Proteus* and *Hafnia* (sucrose positive) from *Salmonella* and *Shigella* (sucrose negative). It complies with the specifications given by IS: 5887(Part I, III and V)

## **COMPOSITION**

| Ingredients                    | Gms / Ltr |
|--------------------------------|-----------|
| Agar                           | 12.000    |
| Lactose                        | 10.000    |
| Peptic digest of animal tissue | 10.000    |
| Casein enzymatic hydrolysate   | 10.000    |
| Sucrose                        | 10.000    |
| Sodium chloride                | 5.000     |
| Yeast extract                  | 3.000     |
| Beef extract                   | 3.000     |
| Dextrose                       | 1.000     |
| Ferrous sulphate               | 0.300     |
| Sodium thiosulphate            | 0.300     |
| Phenol red                     | 0.024     |

## **PRINCIPLE**

The Medium is composed of Peptic digest of animal tissue, Beef extract and Yeast extract which provides nitrogen, carbon and vitamins required for bacterial growth. Triple Sugar Iron Agar consists of three carbohydrates; Dextrose, Lactose and Sucrose. When carbohydrates are fermented, acid production is detected by Phenol red pH indicator. Sodium thiosulphate is reduced to Hydrogen sulphide and Hydrogen sulphide reacts with iron salt yielding typical black iron sulphide. Ferrous sulphate is a Hydrogen sulphide (H<sub>2</sub>S) indicator and gives a typical black precipitate. Sodium chloride maintains osmotic balance of the medium. Agar is used as a solidifying agent.

## **INSTRUCTION FOR USE**

- Dissolve 64.62 grams in 1000ml distilled water.
- Gently heat to boiling with gentle swirling and dissolve the medium completely.
- Mix well and dispense into tubes as desired.
- Sterilize by autoclaving at 15 psi (121°C) for 15 minutes
- Allow the medium to set in sloped form with a butt about 1 inch long.











# **QUALITY CONTROL SPECIFICATIONS**

Appearance of Dehydrated powder: Light yellow to pink, homogeneous free flowing powderAppearance of Prepared medium: Pinkish red coloured, clear to slightly opalescent gel

**pH (at 25°C)** : 7.4± 0.2

## **INTERPRETATION**

Cultural characteristics observed after an incubation at 35-37°C for 18-24 hours.

| Microorganism             | ATCC  | Inoculum<br>(CFU/ml) | Growth    | Slant                                             | Butt                                           | Gas                  | H₂S                                                 |
|---------------------------|-------|----------------------|-----------|---------------------------------------------------|------------------------------------------------|----------------------|-----------------------------------------------------|
| Citrobacter<br>freundi    | 8090  | 50-100               | Luxuriant | Acidic reaction,<br>yellowing of the<br>medium    | Acidic reaction,<br>yellowing of the<br>medium | Positive reaction    | Positive reaction,<br>blackening of<br>medium       |
| Enterobacter<br>aerogenes | 13048 | 50-100               | Luxuriant | Acidic reaction,<br>yellowing of the<br>medium    | Acidic reaction,<br>yellowing of the<br>medium | Positive<br>reaction | Negative<br>reaction, no<br>blackening of<br>medium |
| Escherichia coli          | 25922 | 50-100               | Luxuriant | Acidic reaction,<br>yellowing of the<br>medium    | Acidic reaction,<br>yellowing of the<br>medium | Positive reaction    | Negative<br>reaction, no<br>blackening of<br>medium |
| Klebsiella<br>pneumoniae  | 13883 | 50-100               | Luxuriant | Acidic reaction,<br>yellowing of the<br>medium    | Acidic reaction,<br>yellowing of the<br>medium | Positive<br>reaction | Negative<br>reaction, no<br>blackening of<br>medium |
| Proteus vulgaris          | 13315 | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction, yellowing of the medium       | Negative reaction    | Positive reaction,<br>blackening of<br>medium       |
| Salmonella<br>Paratyphi A | 9150  | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction,<br>yellowing of the<br>medium | Positive reaction    | Negative<br>reaction, no<br>blackening of<br>medium |
| Salmonella<br>Typhi       | 6539  | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction,<br>yellowing of the<br>medium | Negative reaction    | Positive reaction,<br>blackening of<br>medium       |
| Salmonella<br>Typhimurium | 14028 | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction,<br>yellowing of the<br>medium | Positive reaction    | Positive reaction,<br>blackening of<br>medium       |
| Shigella flexneri         | 12022 | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction,<br>yellowing of the<br>medium | Negative<br>reaction | Negative<br>reaction, no<br>blackening of<br>medium |
| Vibrio cholerae           | 15748 | 50-100               | Luxuriant | Alkaline reaction,<br>red colour of the<br>medium | Acidic reaction,<br>yellowing of the<br>medium | Negative<br>reaction | Negative<br>reaction, no<br>blackening of<br>medium |

# **PACKAGING:**

In 100 & 500 gm packaging size.

# **STORAGE**

Dehydrated powder, hygroscopic in nature, store in a dry place, in tightly-sealed containers below 25°C and protect from direct Sunlight. Under optimal conditions, the medium has a shelf life of 4 years. When the container is opened for the







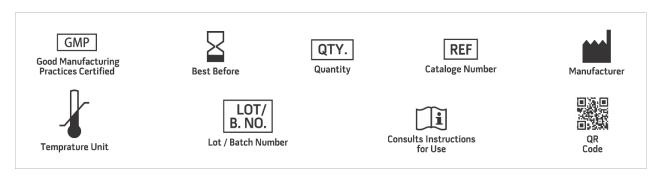








first time, note the time and date on the label space provided on the container. After the desired amount of medium has been taken out replace the cap tightly to protect from hydration.


**Product Deterioration:** Do not use powder if they show evidence of microbial contamination, discoloration, drying, or other signs of deterioration.

## **DISPOSAL**

After use, prepared plates, specimen/sample containers and other contaminated materials must be sterilized before discarding.

#### **REFERENCES**

- 1. Sulkin E.S. and Willett J.C., 1940, J. Lab. Clin. Med.,
- 2. Hajna A.A., 1945, J. Bacteriol, 49:516.
- 3. Vanderzant C. and Splittstoesser D., (Eds.), 1992, Compendium of Methods for the Microbiological Examination of Foods, 3rd ed. APHA, Washington D.C.
- 4. Marshall R. (Ed.), 1992, Standard Methods for the Examination of Dairy Products, 16th ed., APHA, Washington., D.C.
- 5. Finegold and Baron, 1986, Bailey and Scotts Diagnostic Microbiology, 7th ed., The C.V. Mosby Co., St. Louis.
- 6. Greenberg A. E., Trussell R. R. and Clesceri L. S. (Eds.), 1985, Standard Methods for the Examination of Water and Wastewater, 16th ed., APHA, Washington, D.C.
- 7. MacFaddin J., 1985, Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria, Vol. 1, Williams and Wilkins, Baltimore.
- 8. International Organization for Standardization (ISO), 1993, Draft ISO/DIS 6579.
- 9.Bureau of Indian Standards IS: 5887 (Part I) 1976, reaffirmed 1986.
- 10.Bureau of Indian Standards IS: 5887 (Part V) 1976, reaffirmed 1996.
- 11. Bureau of Indian Standards IS: 5887 (Part III) 1999.



**NOTE:** Please consult the Material Safety Data Sheet for information regarding hazards and safe handling Practices.

\*For Lab Use Only Revision: 05th Oct. 2019









