

TM 1113 - UREA AGAR ABSE (CHRISTENSEN)

INTENDED USE

For detection of urease production, particularly by Proteus vulgaris, Micrococci & paracolon organisms.

PRODUCT SUMMARY AND EXPLANATION

Urea Agar is used to detect urease production. Urea Agar described by Christensen detected urease activity by all rapidly urease-positive Proteus organisms and also by other members of Enterobacteriaceae that exhibited a delayed urease reaction. This was accomplished by

- a) Adding glucose to the medium
- b) Decreasing the peptone concentration, and
- c) Decreasing the buffering system, as a less buffered medium detects even smaller amount of alkali.

COMPOSITION

Ingredients	Gms / Ltr	
Peptone	1.000	
Agar	15.000	
Phenol red	0.012 5.000	
Sodium chloride		
Dextrose (Glucose)	1.000	
Disodium phosphate	1.200	
Monopotassium phosphate	0.800	

PRINCIPLE

Peptone is the source of essential nutrients. Dextrose is the energy source. Sodium chloride maintains the osmotic equilibrium of the medium whereas phosphates serve to buffer the medium. Urea is hydrolyzed to liberate ammonia. Phenol red indicator detects the alkalinity generated by visible colour change from orange to pink.

Prolonged incubation may cause alkaline reaction in the medium. A medium without urea serves as negative control to rule out false positive results. Also, all urea test media rely on the alkalinity formation and so they are not specific for determining the absolute rate of urease. The utilization of proteins may raise the pH to alkalinity due to protein hydrolysis and excess of amino acids liberation results in false positive reaction.

INSTRUCTION FOR USE

- Dissolve 24.01 grams in 950 ml distilled water.
- Heat to boiling to dissolve the medium completely.
- Sterilize by autoclaving at 10 psi pressure (115°C) for 20 minutes.
- Cool to 45-50°C and aseptically add 50 ml of sterile 40% Urea Solution and mix well.
- Dispense into sterile tubes and allow to set in the slanting position.
- Do not overheat or reheat the medium as urea decomposes very easily.

QUALITY CONTROL SPECIFICATIONS

Appearance of Powder : Light yellow to light pink homogeneous free flowing powder

Appearance of prepared medium : Yellowish orange coloured clear to slightly opalescent gel forms in tubes as

slants.

pH (at 25°C) : 6.8 ±0.2

INTERPRETATION

Cultural characteristics observed on addition of sterile 40% Urea Solution after an incubation.

Microorganism	АТСС	lnoculum (CFU/ml)	Urease	Incubation Temperature	Incubation Period
Escherichia coli	25922	50-100	Negative reaction, no change	35-37°C	18-24 Hours.
Klebsiella pneumoniae	13883	50-100	Positive reaction, cerise colour	35-37°C	18-24 Hours.
Proteus mirabilis	25933	50-100	Positive reaction, cerise colour	35-37°C	18-24 Hours.
Proteus vulgaris	13315	50-100	Positive reaction, cerise colour	35-37°C	18-24 Hours.

PACKAGING:

In pack size of 100 gm and 500 gm bottles.

STORAGE

Dehydrated powder, hygroscopic in nature, store in a dry place, in tightly-sealed containers below 25°C and protect from direct sunlight. Under optimal conditions, the medium has a shelf life of 4 years. When the container is opened for the first time, note the time and date on the label space provided on the container. After the desired amount of medium has been taken out replace the cap tightly to protect from hydration.

Product Deterioration: Do not use if they show evidence of microbial contamination, discoloration, drying or any other signs of deterioration.

DISPOSAL

After use, prepared plates, specimen/sample containers and other contaminated materials must be sterilized before discarding.

REFERENCES

- 1. Christensen W. B., 1946, J. Bacteriol., 52:461.
- 2. MacFaddin J. F., 2000, Biochemical Tests for Identification of Medical Bacteria, 3rd Ed., Williams and Wilkins, Baltimore. Md.
- 3. Farmer J. J. III, McWhorter A. C., Huntley G. A., Catignani J., J. Clin. Microbiol. 1975: 1 (1): 106-107.
- 4. MacFaddin J. F, 1985, Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria, Vol. 1, Williams and Wilkins, Baltimore, Md.

GMP Good Manufacturing Practices Certified

IVD For In Vitro Diagnostic Use

QTY. Quantity

LOT/ B. NO. Lot / Batch Number

REF Cataloge Number

Temprature Unit

REP MedNet GmbH
Borkstrasse 10,
48163 Muenster, Germany **Authorized Representative** **European Conformity**

Consults Instructions for Use

NOTE: Please consult the Material Safety Data Sheet for information regarding hazards and safe handling Practices. *For Lab Use Only Revision: 08 Nov., 2019

